Phospholipase D and phosphatidic acid enhance the hydrolysis of phospholipids in vesicles and in cell membranes by human secreted phospholipase A2

Biochim Biophys Acta. 1998 Feb 16;1390(2):173-85. doi: 10.1016/s0005-2760(97)00181-1.


Phosphatidyl-choline (PC) vesicles and normal cell membranes are resistant to hydrolysis by human group II secreted PLA2, an enzyme that can attain high concentrations in extracellular fluids during many inflammatory processes. This highly cationic enzyme (pI>10.5) has a marked preference for anionic phospholipid interfaces, normally present within the cell. Therefore, the ability of one such anionic phospholipid, phosphatidic acid (PA), to enhance the activity of this enzyme has been investigated in detail. Results using model membrane vesicles and a continuous fluorescence assay highlight the ability of low molar proportions of PA to stimulate vesicle hydrolysis and this stimulation with increasing PA was parallelled by enhanced interfacial binding. In contrast, no productive binding of this enzyme could be detected to the surface of pure PC vesicles. The enhancement of hydrolysis in the presence of PA could also be achieved by prior treatment of pure PC vesicles with PLD, an effect that was dependent on the concentration of PLD and the duration of exposure to this enzyme. The fluorescence assay also allowed cell membranes and whole cells to be used as substrates and whereas such membrane presentations were refractory to hydrolysis by the human enzyme, prior treatment with PLD allowed hydrolysis using concentrations of this PLA2 that would be found extracellularly under inflammatory conditions. These results highlight the potential for PA, generated at the surface of the cell membrane, to be hydrolysed by extracellular human sPLA2 with the generation of lysophosphatidic acid and other lipid mediators and provides one possible mechanism whereby this human sPLA2 could become pro-inflammatory.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium / pharmacology
  • Cell Membrane / metabolism
  • Enzyme Activation / physiology
  • Group II Phospholipases A2
  • Humans
  • Hydrolysis
  • Kinetics
  • Liposomes / metabolism*
  • Liver / chemistry
  • Macrophages / metabolism
  • Membrane Lipids / metabolism*
  • Phosphatidic Acids / metabolism
  • Phosphatidic Acids / pharmacology*
  • Phosphatidylcholines / metabolism
  • Phosphatidylethanolamines / metabolism
  • Phospholipase D / metabolism*
  • Phospholipases A / metabolism*
  • Phospholipases A2
  • Phospholipids / metabolism
  • Protein Binding / physiology


  • Liposomes
  • Membrane Lipids
  • Phosphatidic Acids
  • Phosphatidylcholines
  • Phosphatidylethanolamines
  • Phospholipids
  • Phospholipases A
  • Group II Phospholipases A2
  • Phospholipases A2
  • Phospholipase D
  • Calcium