NF-kappaB is activated by various stimuli including inflammatory cytokines and stresses. A key step in the activation of NF-kappaB is the phosphorylation of its inhibitors, IkappaBs, by an IkappaB kinase (IKK) complex. Recently, two closely related kinases, designated IKKalpha and IKKbeta, have been identified to be the components of the IKK complex that phosphorylate critical serine residues of IkappaBs for degradation. A previously identified NF-kappaB-inducing kinase (NIK), which mediates NF-kappaB activation by TNFalpha and IL-1, has been demonstrated to activate IKKalpha. Previous studies showed that mitogen-activated protein kinase/ERK kinase kinase-1 (MEKK1), which constitutes the c-Jun N-terminal kinase/stress-activated protein kinase pathway, also activates NF-kappaB by an undefined mechanism. Here, we show that overexpression of MEKK1 preferentially stimulates the kinase activity of IKKbeta, which resulted in phosphorylation of IkappaBs. Moreover, a catalytically inactive mutant of IKKbeta blocked the MEKK1-induced NF-kappaB activation. By contrast, overexpression of NIK stimulates kinase activities of both IKKalpha and IKKbeta comparably, suggesting a qualitative difference between NIK- and MEKK1-mediated NF-kappaB activation pathways. Collectively, these results indicate that NIK and MEKK1 independently activate the IKK complex and that the kinase activities of IKKalpha and IKKbeta are differentially regulated by two upstream kinases, NIK and MEKK1, which are responsive to distinct stimuli.