A survey of physics and dosimetry practice of permanent prostate brachytherapy in the United States

Int J Radiat Oncol Biol Phys. 1998 Mar 1;40(4):1001-5. doi: 10.1016/s0360-3016(97)00901-2.


Purpose: To obtain data with regard to current physics and dosimetry practice in transperineal interstitial permanent prostate brachytherapy (TIPPB) in the U.S. by conducting a survey of institutions performing this procedure with the greatest frequency.

Methods and materials: Seventy brachytherapists with the greatest volume of TIPPB cases in 1995 in the U.S. were surveyed. The four-page comprehensive questionnaire included questions on both clinical and physics and dosimetry practice. Individuals not responding initially were sent additional mailings and telephoned. Physics and dosimetry practice summary statistics are reported. Clinical practice data is reported separately.

Results: Thirty-five (50%) surveys were returned. Participants included 29 (83%) from the private sector and 6 (17%) from academic programs. Among responding clinicians, 125I (89%) is used with greater frequency than 103Pd (83%). Many use both (71%). Most brachytherapists perform preplans (86%), predominately employing ultrasound imaging (85%). Commercial treatment planning systems are used more frequently (75%) than in-house systems (25%). Preplans take 2.5 h (avg.) to perform and are most commonly performed by a physicist (69%). A wide range of apparent activities (mCi) is used for both 125I (0.16-1.00, avg. 0.41) and 103Pd (0.50-1.90, avg. 1.32). Of those assaying sources (71%), the range in number assayed (1 to all) and maximum accepted difference from vendor stated activity (2-20%) varies greatly. Most respondents feel that the manufacturers criteria for source activity are sufficiently stringent (88%); however, some report that vendors do not always meet their criteria (44%). Most postimplant dosimetry imaging occurs on day 1 (41%) and consists of conventional x-rays (83%), CT (63%), or both (46%). Postimplant dosimetry is usually performed by a physicist (72%), taking 2 h (avg.) to complete. Calculational formalisms and parameters vary substantially. At the time of the survey, few institutions have adopted AAPM TG-43 recommendations (21%). Only half (50%) of those not using TG-43 indicated an intent to do so in the future. Calculated doses at 1 cm from a single 1 mCi apparent activity source permanently implanted varied significantly. For 125I, doses calculated ranged from 13.08-40.00 Gy and for 103Pd, from 3.10 to 8.70 Gy.

Conclusion: While several areas of current physics and dosimetry practice are consistent among institutions, treatment planning and dose calculation techniques vary considerably. These data demonstrate a relative lack of consensus with regard to these practices. Furthermore, the wide variety of calculational techniques and benchmark data lead to calculated doses which vary by clinically significant amounts. It is apparent that the lack of standardization with regard to treatment planning and dose calculation practice in TIPPB must be addressed prior to performing any meaningful comparison of clinical results between institutions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brachytherapy / methods
  • Brachytherapy / standards*
  • Health Care Surveys
  • Humans
  • Iodine Radioisotopes / therapeutic use
  • Male
  • Palladium / therapeutic use
  • Prostatic Neoplasms / radiotherapy*
  • Quality Assurance, Health Care
  • Radioisotopes / therapeutic use
  • Radiometry / methods
  • Radiopharmaceuticals / therapeutic use
  • Radiotherapy Dosage / standards*
  • United States


  • Iodine Radioisotopes
  • Radioisotopes
  • Radiopharmaceuticals
  • Palladium