Microbial production of hydrogen: an overview

Crit Rev Microbiol. 1998;24(1):61-84. doi: 10.1080/10408419891294181.


Production of hydrogen by anaerobes, facultative anaerobes, aerobes, methylotrophs, and photosynthetic bacteria is possible. Anaerobic Clostridia are potential producers and immobilized C. butyricum produces 2 mol H2/mol glucose at 50% efficiency. Spontaneous production of H2 from formate and glucose by immobilized Escherichia coli showed 100% and 60% efficiencies, respectively. Enterobactericiae produces H2 at similar efficiency from different monosaccharides during growth. Among methylotrophs, methanogenes, rumen bacteria, and thermophilic archae, Ruminococcus albus, is promising (2.37 mol/mol glucose). Immobilized aerobic Bacillus licheniformis optimally produces 0.7 mol H2/mol glucose. Photosynthetic Rhodospirillum rubrum produces 4, 7, and 6 mol of H2 from acetate, succinate, and malate, respectively. Excellent productivity (6.2 mol H2/mol glucose) by co-cultures of Cellulomonas with a hydrogenase uptake (Hup) mutant of R. capsulata on cellulose was found. Cyanobacteria, viz., Anabaena, Synechococcus, and Oscillatoria sp., have been studied for photoproduction of H2. Immobilized A. cylindrica produces H2 (20 ml/g dry wt/h) continually for 1 year. Increased H2 productivity was found for Hup mutant of A. variabilis. Synechococcus sp. has a high potential for H2 production in fermentors and outdoor cultures. Simultaneous productions of oxychemicals and H2 by Klebseilla sp. and by enzymatic methods were also attempted. The fate of H2 biotechnology is presumed to be dictated by the stock of fossil fuel and state of pollution in future.

Publication types

  • Review

MeSH terms

  • Bacteria / metabolism*
  • Bacteria, Aerobic / metabolism
  • Bacteria, Anaerobic / metabolism
  • Cytochromes / physiology
  • Hydrogen / metabolism*


  • Cytochromes
  • Hydrogen