Adult cortical dynamics

Physiol Rev. 1998 Apr;78(2):467-85. doi: 10.1152/physrev.1998.78.2.467.


There are many influences on our perception of local features. What we see is not strictly a reflection of the physical characteristics of a scene but instead is highly dependent on the processes by which our brain attempts to interpret the scene. As a result, our percepts are shaped by the context within which local features are presented, by our previous visual experiences, operating over a wide range of time scales, and by our expectation of what is before us. The substrate for these influences is likely to be found in the lateral interactions operating within individual areas of the cerebral cortex and in the feedback from higher to lower order cortical areas. Even at early stages in the visual pathway, cells are far more flexible in their functional properties than previously thought. It had long been assumed that cells in primary visual cortex had fixed properties, passing along the product of a stereotyped operation to the next stage in the visual pathway. Any plasticity dependent on visual experience was thought to be restricted to a period early in the life of the animal, the critical period. Furthermore, the assembly of contours and surfaces into unified percepts was assumed to take place at high levels in the visual pathway, whereas the receptive fields of cells in primary visual cortex represented very small windows on the visual scene. These concepts of spatial integration and plasticity have been radically modified in the past few years. The emerging view is that even at the earliest stages in the cortical processing of visual information, cells are highly mutable in their functional properties and are capable of integrating information over a much larger part of visual space than originally believed.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Adult
  • Animals
  • Brain Mapping
  • Cerebral Cortex / physiology*
  • Humans
  • Learning / physiology
  • Neuronal Plasticity