Various pathogenetic factors revolving around the central role of protein kinase C activation in the occurrence of cerebral vasospasm

Crit Rev Neurosurg. 1998 May 13;8(3):176-87. doi: 10.1007/s003290050075.

Abstract

Accumulating evidence indicates that protein kinase C (PKC)-dependent, Ca2+-independent smooth muscle contraction plays the central role in the occurrence of chronic vasospasm following aneurysmal subarachnoid hemorrhage. As far as we know, the nitric oxide/ cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) system comprises the most efficacious inhibitory mechanism against the PKC-dependent contractile mechanism, and the myogenic tonus of normal cerebral arteries is thought to be maintained on the balance between these systems. Recent studies indicate that in spastic cerebral arteries, the rise in the intracellular diacylglycerol level causes PKC activation presumably owing to the overexpression of endothelin (ET)-1 as well as the generation of free radicals, whereas the cGMP level is inversely reduced owing to the inactivation of soluble guanylate cyclase through some as yet unknown mechanism. The resultant loss of balance between the two systems is considered to culminate in the occurrence of chronic vasospasm lasting for nearly 2 weeks. Based on the above concept, recent papers concerning the effects of reactive oxygen species on the arterial smooth muscle, alterations of various membrane ion channels, particularly of adenosine triphospate (ATP)-activated potassium channels in spastic arteries, the preventive effects of ET antagonists on vasospasm, and the causative role of ET-1 were reviewed in the present article. The roles of the above spasmogenic factors or mechanisms may be more clearly understood on the basis of the antagonistic interrelation between the PKC and the PKG systems, which exert diverse influences on the force-generating system as well as on its multifarious regulatory mechanisms in smooth muscle cells.