Cell cycle-regulated processing of HEF1 to multiple protein forms differentially targeted to multiple subcellular compartments

Mol Cell Biol. 1998 Jun;18(6):3540-51. doi: 10.1128/MCB.18.6.3540.

Abstract

HEF1, p130(Cas), and Efs/Sin constitute a family of multidomain docking proteins that have been implicated in coordinating the regulation of cell adhesion. Each of these proteins contains an SH3 domain, conferring association with focal adhesion kinase; a domain rich in SH2-binding sites, phosphorylated by or associating with a number of oncoproteins, including Abl, Crk, Fyn, and others; and a highly conserved carboxy-terminal domain. In this report, we show that the HEF1 protein is processed in a complex manner, with transfection of a single cDNA resulting in the generation of at least four protein species, p115(HEF1), p105(HEF1), p65(HEF1), and p55(HEF1). We show that p115(HEF1) and p105(HEF1) are different phosphorylation states of the full-length HEF1. p55(HEF1), however, encompasses only the amino-terminal end of the HEF1 coding sequence and arises via cleavage of full-length HEF1 at a caspase consensus site. We find that HEF1 proteins are abundantly expressed in epithelial cells derived from breast and lung tissue in addition to the lymphoid cells in which they have been predominantly studied to date. In MCF-7 cells, we find that expression of the endogenous HEF1 proteins is cell cycle regulated, with p105(HEF1) and p115(HEF1) being rapidly upregulated upon induction of cell growth, whereas p55(HEF1) is produced specifically at mitosis. While p105(HEF1) and p115(HEF1) are predominantly cytoplasmic and localize to focal adhesions, p55(HEF1) unexpectedly is shown to associate with the mitotic spindle. In support of a role at the spindle, two-hybrid library screening with HEF1 identifies the human homolog of the G2/M spindle-regulatory protein Dim1p as a specific interactor with a region of HEF1 encompassed in p55(HEF1). In sum, these data suggest that HEF1 may directly connect morphological control-related signals with cell cycle regulation and thus play a role in pathways leading to the progression of cancer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Cell Adhesion
  • Cell Compartmentation*
  • Cell Cycle Proteins / metabolism
  • Cell Cycle*
  • Cysteine Endopeptidases / metabolism
  • DNA, Complementary / metabolism
  • Epithelial Cells / cytology
  • Epithelial Cells / metabolism
  • HeLa Cells
  • Humans
  • Methyltransferases / metabolism
  • Mitosis
  • Phosphoproteins / genetics
  • Phosphoproteins / metabolism*
  • Protein Conformation
  • Spindle Apparatus / metabolism
  • Transfection
  • Tumor Cells, Cultured

Substances

  • Adaptor Proteins, Signal Transducing
  • Cell Cycle Proteins
  • DNA, Complementary
  • NEDD9 protein, human
  • Phosphoproteins
  • Methyltransferases
  • Cysteine Endopeptidases