The deep-sea teleost cornea: a comparative study of gadiform fishes
- PMID: 9589890
- DOI: 10.14670/HH-13.325
The deep-sea teleost cornea: a comparative study of gadiform fishes
Abstract
The corneal structure of three deep-sea species of teleosts (Gadiformes, Teleostei) from different depths (250-4000 m) and photic zones are examined at the level of the light and electron microscopes. Each species shows a similar but complex arrangement of layers with a cornea split into dermal and scleral components. The dermal cornea comprises an epithelium overlying a basement membrane and a dermal stroma with sutures and occasional keratocytes. Nezumia aequalis is the only species to possess a Bowman's layer, although it is not well-developed. The scleral cornea is separated from the dermal cornea by a mucoid layer and, in contrast to shallow-water species, is divided into three main layers; an anterior scleral stroma, a middle or iridescent layer and a posterior scleral stroma. The iridescent layer of collagen and intercalated cells or cellular processes is bounded by a layer of cells and the posterior scleral stroma overlies a Desçemet's membrane and an endothelium. In the relatively shallow-water Microgadus proximus, the keratocytes of the dermal stroma, the cells of the iridescent layer and the endothelial cells all contain aligned endoplasmic reticulum, which may elicit an iridescent reflex. No alignment of the endoplasmic reticulum was found in N. aequalis or Coryphanoides (Nematonurus) armatus. The relative differences between shallow-water and deep-sea corneas are discussed in relation to the constraints of light, depth and temperature.
Similar articles
-
The fine structure of the cornea of the salamanderfish, Lepidogalaxias salamandroides (Lepidogalaxiidae, Teleostei).Cornea. 1996 Jul;15(4):414-26. doi: 10.1097/00003226-199607000-00012. Cornea. 1996. PMID: 8776568
-
Ultrastructure and organisation of the cornea, lens and iris in the pipefish, Corythoichthyes paxtoni (Syngnathidae, Teleostei).Histol Histopathol. 1995 Apr;10(2):313-23. Histol Histopathol. 1995. PMID: 7599430
-
The cornea of the sand lance, Limnichthyes fasciatus (Creeiidae).Cornea. 1988;7(3):190-203. Cornea. 1988. PMID: 3168488
-
Bowman's layer structure and function: critical or dispensable to corneal function? A hypothesis.Cornea. 2000 Jul;19(4):417-20. doi: 10.1097/00003226-200007000-00001. Cornea. 2000. PMID: 10928749 Review.
-
Overview of the Cornea: Structure, Function, and Development.Prog Mol Biol Transl Sci. 2015;134:7-23. doi: 10.1016/bs.pmbts.2015.04.001. Epub 2015 Jun 4. Prog Mol Biol Transl Sci. 2015. PMID: 26310146 Review.
Cited by
-
The Functional Anatomy of the Cornea and Anterior Chamber in Lampreys: Insights From the Pouched Lamprey, Geotria australis (Geotriidae, Agnatha).Front Neuroanat. 2021 Dec 23;15:786729. doi: 10.3389/fnana.2021.786729. eCollection 2021. Front Neuroanat. 2021. PMID: 35002638 Free PMC article.
-
Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging.Nat Commun. 2021 Jun 7;12(1):3348. doi: 10.1038/s41467-021-23788-4. Nat Commun. 2021. PMID: 34099728 Free PMC article.
-
Functional morphology of the cornea of the Little Penguin Eudyptula minor (Aves).J Anat. 2021 Sep;239(3):732-746. doi: 10.1111/joa.13438. Epub 2021 Mar 31. J Anat. 2021. PMID: 33792036 Free PMC article.
-
Visual adaptations of the eye of the gilthead sea bream (Sparus aurata).Vet Res Commun. 2017 Dec;41(4):257-262. doi: 10.1007/s11259-017-9696-7. Epub 2017 Aug 26. Vet Res Commun. 2017. PMID: 28842847
-
Structure and function of corneal surface of mudskipper fishes.Fish Physiol Biochem. 2016 Oct;42(5):1481-9. doi: 10.1007/s10695-016-0234-2. Epub 2016 May 13. Fish Physiol Biochem. 2016. PMID: 27178187