Mms4, a putative transcriptional (co)activator, protects Saccharomyces cerevisiae cells from endogenous and environmental DNA damage

Mol Gen Genet. 1998 Apr;257(6):614-23. doi: 10.1007/s004380050689.


mms4-1 is one of several Saccharomyces cerevisiae mutants that exhibit an increased sensitivity to methyl methanesulfonate (MMS), but not to UV or X-rays. We have isolated the MMS4 gene by functional complementation of the MMS-sensitive phenotype in the mms4-1 strain. The MMS4 gene encodes a 691-amino acid, 78.7-kDa protein. The deduced Mms4 protein does not show significant homology to any of the known proteins in the database. However, several putative functional domains suggest that it may be a nuclear protein capable of interacting with other proteins. Examination of the mms4delta mutant phenotype indicates that the mutation not only sensitizes DNA to methylating and ethylating agents, but also to other DNA damage that blocks DNA replication. However, the mms4delta mutant appears to be more sensitive to chronic treatment than to acute treatment by DNA-damaging agents. Furthermore, the spontaneous mutation rate increases significantly in the mms4delta mutant. Mms4 alone, when fused to a Gal4 DNA-binding domain, is able to activate P(GAL1)-lacZ and P(GAL1)-HIS3 reporter genes in a two-hybrid system; the Mms4 transactivation domain maps to the highly acidic N-terminal region. These results collectively suggest that Mms4 may function as a transcriptional (co)activator and play an important role in DNA repair and/or synthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • DNA Damage*
  • Flap Endonucleases
  • Fungal Proteins / genetics*
  • Genes, Fungal / physiology*
  • Methyl Methanesulfonate / pharmacology
  • Molecular Sequence Data
  • Mutagens / pharmacology
  • Saccharomyces cerevisiae / drug effects*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / radiation effects
  • Saccharomyces cerevisiae Proteins*
  • Trans-Activators / genetics*
  • Transcription Factors / genetics
  • Transcriptional Activation*
  • Ultraviolet Rays


  • Fungal Proteins
  • Mutagens
  • Saccharomyces cerevisiae Proteins
  • Trans-Activators
  • Transcription Factors
  • Methyl Methanesulfonate
  • Flap Endonucleases
  • MMS4 protein, S cerevisiae