This study investigates the neural pathways, mediators, and cyclooxygenase isoenzymes involved in the gastroprotection conferred by peptone in rats. Intragastric perfusion with 8% peptone protected against gross and histological damage induced by subsequent perfusion with 50% ethanol. The gastroprotective effect of peptone was near maximally inhibited by gastrin immunoneutralization, inactivation of capsaicin-sensitive afferent neurons, calcitonin gene-related peptide (CGRP) immunoneutralization, blockade of gastrin receptors, CGRP, bombesin/gastrin-releasing peptide (GRP), or somatostatin receptors, and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester and was partially (46%) counteracted by atropine. Indomethacin and the selective cyclooxygenase-2 inhibitors NS-398 and L-745,337 dose dependently (50% inhibitory dose, 4.2, 0.8, and 1.5 mg/kg, respectively) attenuated the peptone-induced protection. Dexamethasone was ineffective. These results indicate that protective effects of peptone involve endogenous gastrin and possibly somatostatin and are mediated by capsaicin-sensitive afferent, cholinergic, and bombesin/GRP neurons. CGRP, NO, and prostaglandins participate as essential mediators. The study provides evidence that prostaglandins derived from a constitutive cyclooxygenase-2 contribute to mucosal defense in the presence of ulcerogens and thus participate in homeostatic functions of the stomach.