Activity-dependent fluorescent labeling of bacteria that degrade toluene via toluene 2,3-dioxygenase

Appl Microbiol Biotechnol. 1998 Apr;49(4):455-62. doi: 10.1007/s002530051198.


Alternative substrates for the toluene 2,3-dioxygenase pathway of several pseudomonads served as enzyme-activity-dependent fluorescent probes for the bacteria. Phenylacetylene and cinnamonitrile were transformed to fluorescent and brightly colored products by Pseudomonas putida F1, Pseudomonas fluorescens CFS215, and Burkholderia (Pseudomonas) strain JS150. Active bacteria transformed phenylacetylene, producing bright yellow solutions containing the putative product 2-hydroxy-6-oxo-7-octyn-2,4-dienoate. Transformation of cinnamonitrile resulted in bright orange solutions due to accumulation of the putative product 2-hydroxy-6-oxo-8-cyanoocta-2,4,7-trienoate. Chemical and physical properties of the products supported their identification, which indicated that the first three enzymes of the pathway catalyzed product formation. Phenylacetylene labeled bacteria with green fluorescence emission; bacteria were concentrated on black 0.2-micron-pore-size polycarbonate filters containing polyvinylpyrrolidone (PVP) as a wetting agent. Bacteria labeled with cinnamonitrile were fluorescent orange; labeling was effective with bacteria trapped on PVP-free polycarbonate filters. Production of the enzymes involved in labeling of P. putida F1 and P. fluorescens CFS215 was induced by growth (on arginine) in the presence of toluene; cells grown on arginine without toluene were not labeled. Labeling of P. putida F1 by phenylacetylene was inhibited by toluene, indicating that the same enzymatic pathway was required for transformations of both substrates. Bacteria expressing other toluene-degrading enzymatic pathways were not fluorescently labeled with phenylacetylene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodegradation, Environmental
  • Biomarkers
  • Fluorescence
  • Mixed Function Oxygenases / metabolism*
  • Oxygenases / metabolism*
  • Pseudomonas / enzymology*
  • Pseudomonas / growth & development
  • Toluene / metabolism*


  • Biomarkers
  • Toluene
  • Mixed Function Oxygenases
  • Oxygenases
  • toluene 2,3-dioxygenase