Adapting to supernormal auditory localization cues. I. Bias and resolution

J Acoust Soc Am. 1998 Jun;103(6):3656-66. doi: 10.1121/1.423088.


Head-related transfer functions (HRTFs) were used to create spatialized stimuli for presentation through earphones. Subjects performed forced-choice, identification tests during which allowed response directions were indicated visually. In each experimental session, subjects were first presented with auditory stimuli in which the stimulus HRTFs corresponded to the allowed response directions. The correspondence between the HRTFs used to generate the stimuli and the directions was then changed so that response directions no longer corresponded to the HRTFs in the natural way. Feedback was used to train subjects as to which spatial cues corresponded to which of the allowed responses. Finally, the normal correspondence between direction and HRTFs was reinstated. This basic experimental paradigm was used to explore the effects of the type of feedback provided, the complexity of the stimulated acoustic scene, the number of allowed response positions, and the magnitude of the HRTF transformation subjects had to learn. Data showed that (1) although subjects may not adapt completely to a new relationship between physical stimuli and direction, response bias decreases substantially with training, and (2) the ability to resolve different HRTFs depends both on the stimuli presented and on the state of adaptation of the subject.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Auditory Perception / physiology*
  • Cues*
  • Humans
  • Sound Localization / physiology*