Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;71(1):378-87.
doi: 10.1046/j.1471-4159.1998.71010378.x.

Regulation of Drosophila Ca2+/calmodulin-dependent protein kinase II by autophosphorylation analyzed by site-directed mutagenesis

Affiliations
Free article

Regulation of Drosophila Ca2+/calmodulin-dependent protein kinase II by autophosphorylation analyzed by site-directed mutagenesis

Z Wang et al. J Neurochem. 1998 Jul.
Free article

Abstract

In this study we demonstrate that Drosophila calcium/calmodulin-dependent protein kinase II (CaMKII) is capable of complex regulation by autophosphorylation of the three threonines within its regulatory domain. Specifically, we show that autophosphorylation of threonine-287 in Drosophila CaMKII is equivalent to phosphorylation of threonine-286 in rat alpha CaMKII both in its ability to confer calcium independence on the enzyme and in the mechanistic details of how it becomes phosphorylated. Autophosphorylation of this residue occurs only within the holoenzyme structure and requires calmodulin (CaM) to be bound to the substrate subunit. Phosphorylation of threonine-306 and threonine-307 in the CaM binding domain of the Drosophila kinase occurs only in the absence of CaM, and this phosphorylation is capable of inhibiting further CaM binding. Additionally, our findings suggest that phosphorylation of threonine-306 and threonine-307 does not mimic bound CaM to alleviate the requirement for CaM binding to the substrate subunit for intermolecular threonine-287 phosphorylation. These results demonstrate that the mechanism of regulatory autophosphorylation of this kinase predates the split between invertebrates and vertebrates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources