Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 246 (1), 179-89

A Cell Surface Protein With Herpesvirus Entry Activity (HveB) Confers Susceptibility to Infection by Mutants of Herpes Simplex Virus Type 1, Herpes Simplex Virus Type 2, and Pseudorabies Virus

Affiliations

A Cell Surface Protein With Herpesvirus Entry Activity (HveB) Confers Susceptibility to Infection by Mutants of Herpes Simplex Virus Type 1, Herpes Simplex Virus Type 2, and Pseudorabies Virus

M S Warner et al. Virology.

Abstract

Certain mutant strains of herpes simplex virus type 1 (HSV-1) are unable to infect cells in which entry is dependent on HVEM, the previously described herpesvirus entry mediator designated here as herpesvirus entry protein A (HveA). These mutant viruses can infect other cells where entry is apparently dependent on other co-receptors. The mutant virus HSV-1(KOS)Rid1 was used to screen a human cDNA expression library for ability of transfected plasmids to convert resistant Chinese hamster ovary cells to susceptibility to virus entry. A plasmid expressing the previously described poliovirus receptor-related protein 2 (Prr2) was isolated on the basis of this activity. This protein, designated here as HveB, was shown to mediate the entry of three mutant HSV-1 strains that cannot use HVEM as co-receptor, but not wild-type HSV-1 strains. HveB also mediated the entry of HSV-2 and pseudorabies virus but not bovine herpesvirus type 1. HveB was expressed in some human neuronal cell lines, fibroblastic cells, keratinocytes, and primary activated T lymphocytes. Antibodies specific for HveB blocked infection of HveB-expressing CHO cells and a human fibroblastic cell strain HEL299. Differences in ability of HSV-1 and HSV-2 strains to use HveB for entry should influence the types of cells that can be infected and thereby account in part for serotype and strain differences in tissue tropism and pathogenicity.

Similar articles

See all similar articles

Cited by 200 articles

See all "Cited by" articles

Publication types

MeSH terms

Associated data

LinkOut - more resources

Feedback