Responses of deep entorhinal cortex are epileptiform in an electrogenic rat model of chronic temporal lobe epilepsy

J Neurophysiol. 1998 Jul;80(1):230-40. doi: 10.1152/jn.1998.80.1.230.


We investigated whether entorhinal cortex (EC) layer IV neurons are hyperexcitable in the post-selfsustaining limbic status epilepticus (post-SSLSE) animal model of temporal lobe epilepsy. We studied naive rats (n = 44), epileptic rats that had experienced SSLSE resulting in spontaneous seizures (n = 45), and electrode controls (n = 7). There were no differences between electrode control and naive groups, which were pooled into a single control group. Intracellular and extracellular recordings were made from deep layers of EC, targeting layer IV, which was activated by stimulation of the superficial layers of EC or the angular bundle. There were no differences between epileptic and control neurons in basic cellular characteristics, and all neurons were quiescent under resting conditions. In control tissue, 77% of evoked intracellular responses consisted of a short-duration [8.6 +/- 1.3 (SE) ms] excitatory postsynaptic potential and a single action potential followed by gamma-aminobutyric acid-A (GABAA) and GABAB inhibitory post synaptic potentials (IPSPs). Ten percent of controls did not contain IPSPs. In chronically epileptic tissue, evoked intracellular responses demonstrated prolonged depolarizing potentials (256 +/- 39 ms), multiple action potentials (13 +/- 4), and no IPSPs. Ten percent of epileptic responses were followed by rhythmic "clonic" depolarizations. Epileptic responses exhibited an all-or-none response to progressive increases in stimulus intensity and required less stimulation to elicit action potentials. In both epileptic and control animals, intracellular responses correlated precisely in morphology and duration with extracellular field potentials. Severing the hippocampus from the EC did not alter the responses. Duration of intracellular epileptic responses was reduced 22% by the N-methyl--aspartate (NMDA) antagonist (-)-2-amino-5-phosphonovaleric acid (APV), but they did not return to normal and IPSPs were not restored. Epileptic and control responses were abolished by the non-NMDA antagonist 6, 7-dinitroquinoxaline-2-3-dione (DNQX). A monosynaptic IPSP protocol was used to test connectivity of inhibitory interneurons to primary cells by direct activation of interneurons with a stimulating electrode placed near the recording electrode in the presence of APV and DNQX. Using this protocol, IPSPs similar to control (P > 0.05) were seen in epileptic cells. The findings demonstrate that deep layer EC cells are hyperexcitable or "epileptiform" in this model. Hyperexcitability is not due to interactions with the hippocampus. It is due partially to augmented NMDA-mediated excitation. The lack of IPSPs in epileptic neurons may suggest inhibition is impaired, but we found evidence that inhibitory interneurons are connected to their target cells and are capable of inducing IPSPs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials
  • Analysis of Variance
  • Animals
  • Electric Stimulation
  • Electroencephalography
  • Entorhinal Cortex / physiology
  • Entorhinal Cortex / physiopathology*
  • Epilepsy, Temporal Lobe / physiopathology*
  • Hippocampus / physiology
  • Hippocampus / physiopathology*
  • In Vitro Techniques
  • Male
  • Membrane Potentials
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, GABA-A / physiology
  • Reference Values
  • Status Epilepticus / physiopathology*
  • Synaptic Transmission


  • Receptors, GABA-A