In many mammalian species, it is known that males and females differ in place learning ability. The performance by men and women is commonly reported to also differ, despite a large amount of variability and ambiguity in measuring spatial abilities. In the non-human literature, the gold standard for measuring place learning ability in mammals is the Morris water task. This task requires subjects to use the spatial arrangement of cues outside of a circular pool to swim to a hidden goal platform located in a fixed location. We used a computerized version of the Morris water task to assess whether this task will generalize into the human domain and to examine whether sex differences exist in this domain of topographical learning and memory. Across three separate experiments, varying in attempts to maximize spatial performance, we consistently found males navigate to the hidden platform better than females across a variety of measures. The effect sizes of these differences are some of the largest ever reported and are robust and replicable across experiments. These results are the first to demonstrate the effectiveness and utility of the virtual Morris water task for humans and show a robust sex difference in virtual place learning.