Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor

J Biol Chem. 1998 Aug 14;273(33):20689-92. doi: 10.1074/jbc.273.33.20689.

Abstract

Activation and Thr286 autophosphorylation of calcium/calmodulindependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphorylation-dependent targeting of CaMKII. CaMKII and NMDA receptors colocalize in neuronal dendritic spines, and a CaMKII.NMDA receptor complex can be isolated from brain extracts. Autophosphorylation induces direct high-affinity binding of CaMKII to a 50 amino acid domain in the NR2B cytoplasmic tail; little or no binding is observed to NR2A and NR1 cytoplasmic tails. Specific colocalization of CaMKII with NR2B-containing NMDA receptors in transfected cells depends on receptor activation, Ca2+ influx, and Thr286 autophosphorylation. Translocation of CaMKII because of interaction with the NMDA receptor Ca2+ channel may potentiate kinase activity and provide exquisite spatial and temporal control of postsynaptic substrate phosphorylation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Cells, Cultured
  • Humans
  • Phosphorylation
  • Protein Binding
  • Rats
  • Receptors, N-Methyl-D-Aspartate / chemistry
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Recombinant Proteins / metabolism

Substances

  • Receptors, N-Methyl-D-Aspartate
  • Recombinant Proteins
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases