Ribonuclease A variants with potent cytotoxic activity

Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10407-12. doi: 10.1073/pnas.95.18.10407.

Abstract

Select members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol, where they degrade cellular RNA and cause cell death. Ribonuclease inhibitor (RI), a cytosolic protein, binds to members of the RNase A superfamily with inhibition constants that span 10 orders of magnitude. Here, we show that the affinity of a ribonuclease for RI plays an integral role in defining the potency of a cytotoxic ribonuclease. RNase A is not cytotoxic and binds RI with high affinity. Onconase, a cytotoxic RNase A homolog, binds RI with low affinity. To disrupt the RI-RNase A interaction, three RNase A residues (Asp-38, Gly-88, and Ala-109) that form multiple contacts with RI were replaced with arginine. Replacing Asp-38 and Ala-109 with an arginine residue has no effect on the RI-RNase interaction. In addition, these variants are not cytotoxic. In contrast, replacing Gly-88 with an arginine residue yields a ribonuclease (G88R RNase A) that retains catalytic activity in the presence of RI and is cytotoxic to a transformed cell line. Replacing Gly-88 with aspartate also yields a ribonuclease (G88D RNase A) with a decreased affinity for RI and cytotoxic activity. The cytotoxic potency of onconase, G88R RNase A, and G88D RNase A correlate with RI evasion. We conclude that ribonucleases that retain catalytic activity in the presence of RI are cytotoxins. This finding portends the development of a class of chemotherapeutic agents based on pancreatic ribonucleases.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cattle
  • Cell Survival / drug effects*
  • Enzyme Inhibitors / pharmacology
  • Enzyme Stability
  • Kinetics
  • Recombinant Proteins / antagonists & inhibitors
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / pharmacology
  • Ribonuclease, Pancreatic / antagonists & inhibitors
  • Ribonuclease, Pancreatic / chemistry
  • Ribonuclease, Pancreatic / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Enzyme Inhibitors
  • Recombinant Proteins
  • Ribonuclease, Pancreatic