Spectral envelope coding in cat primary auditory cortex: linear and non-linear effects of stimulus characteristics

Eur J Neurosci. 1998 Mar;10(3):926-40. doi: 10.1046/j.1460-9568.1998.00102.x.


Electrophysiological studies in mammal primary auditory cortex have demonstrated neuronal tuning and cortical spatial organization based upon spectral and temporal qualities of the stimulus including: its frequency, intensity, amplitude modulation and frequency modulation. Although communication and other behaviourally relevant sounds are usually complex, most response characterizations have used tonal stimuli. To better understand the mechanisms necessary to process complex sounds, we investigated neuronal responses to a specific class of broadband stimuli, auditory gratings or ripple stimuli, and compared the responses with single tone responses. Ripple stimuli consisted of 150-200 frequency components with the intensity of each component adjusted such that the envelope of the frequency spectrum is sinusoidal. It has been demonstrated that neurons are tuned to specific characteristics of those ripple stimulus including the intensity, the spacing of the peaks, and the location of the peaks and valleys (C. E. Schreiner and B. M. Calhoun, Auditory Neurosci., 1994; 1: 39-61). Although previous results showed that neuronal response strength varied with the intensity and the fundamental frequency of the stimulus, it is shown here that the relative response to different ripple spacings remains essentially constant with changes in the intensity and the fundamental frequency. These findings support a close relationship between pure-tone receptive fields and ripple transfer functions. However, variations of other stimulus characteristics, such as spectral modulation depth, result in non-linear alterations in the ripple transformation. The processing between the basilar membrane and the primary auditory cortex of broadband stimuli appears generally to be non-linear, although specific stimulus qualities, including the phase of the spectral envelope, are processed in a nearly linear manner.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Cortex / anatomy & histology
  • Auditory Cortex / cytology
  • Auditory Cortex / physiology*
  • Auditory Perception / physiology*
  • Cats
  • Electrophysiology
  • Fourier Analysis
  • Linear Models
  • Nonlinear Dynamics
  • Sound Localization / physiology