Increasing complexity of Ras signaling

Oncogene. 1998 Sep 17;17(11 Reviews):1395-413. doi: 10.1038/sj.onc.1202174.


The initial discovery that ras genes endowed retroviruses with potent carcinogenic properties and the subsequent determination that mutated ras genes were present in a wide variety of human cancers, prompted a strong suspicion that the growth-promoting actions of mutated Ras proteins contribute to their aberrant regulation of growth stimulatory signaling pathways. In 1993, a remarkable convergence of experimental observations from genetic analyses of Drosophila, S. cerevisiae and C. elegans as well as biochemical and biological studies in mammalian cells came together to define a clear role for Ras in signal transduction. What emerged was an elegant linear signaling pathway where Ras functions as a relay switch that is positioned downstream of cell surface receptor tyrosine kinases and upstream of a cytoplasmic cascade of kinases that included the mitogen-activated protein kinases (MAPKs). Activated MAPKs in turn regulated the activities of nuclear transcription factors. Thus, a signaling cascade where every component between the cell surface and the nucleus was defined and conserved in worms, flies and man. This was a remarkable achievement in our efforts to appreciate how the aberrant function of Ras proteins may contribute to the malignant growth properties of the cancer cell. However, the identification of this pathway has proven to be just the beginning, rather than the culmination, of our understanding of Ras in signal transduction. Instead, we now appreciate that this simple linear pathway represents but a minor component of a very complex signaling circuitry. Ras signaling has emerged to involve a complex array of signaling pathways, where cross-talk, feedback loops, branch points and multi-component signaling complexes are recurring themes. The simplest concept of a signaling cascade, where each component simply relays the same message to the next, is clearly not the case. In this review, we summarize our current understanding of Ras signal transduction with an emphasis on new complexities associated with the recognition and/or activation of cellular effectors, and the diverse array of signaling pathways mediated by interaction between Ras and Ras-subfamily proteins with multiple effectors.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism
  • Extracellular Matrix / metabolism
  • Genes, ras*
  • Humans
  • Molecular Sequence Data
  • Neoplasms / drug therapy
  • Proto-Oncogene Proteins c-raf / metabolism
  • Signal Transduction*


  • Proto-Oncogene Proteins c-raf
  • Calcium-Calmodulin-Dependent Protein Kinases