Genetic evidence for a higher female migration rate in humans

Nat Genet. 1998 Nov;20(3):278-80. doi: 10.1038/3088.


Mitochondrial DNA and the Y chromosome have been used extensively in the study of modern human origins and other phylogenetic questions, but not in the context of their sex-specific modes of transmission. mtDNA is transmitted exclusively by females, whereas the Y chromosome is passed only among males. As a result, differences in the reproductive output or migration rate of males and females will influence the geographic patterns and relative level of genetic diversity on the Y chromosome, autosomes and mtDNA (ref. 1). We have found that Y chromosome variants tend to be more localized geographically than those of mtDNA and the autosomes. The fraction of variation within human populations for Y chromosome single nucleotide polymorphisms (SNPs) is 35.5%, versus 80-85% for the autosomes and mtDNA (refs 6-8). A higher female than male migration rate (via patrilocality, the tendency for a wife to move into her husband's natal household) explains most of this discrepancy, because diverse Y chromosomes would enter a population at a lower rate than mtDNA or the autosomes. Polygyny may also contribute, but the reduction of variation within populations that we measure for the Y chromosome, relative to the autosomes and mitochondrial DNA, is of such magnitude that differences in the effective population sizes of the sexes alone are insufficient to produce the observation.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • DNA, Mitochondrial / genetics
  • Emigration and Immigration*
  • Female
  • Genetic Variation
  • Genetics, Population*
  • Humans
  • Male
  • Microsatellite Repeats
  • Polymorphism, Genetic
  • Sex Characteristics
  • Y Chromosome / genetics


  • DNA, Mitochondrial