Decreased IL-12 production and Th1 cell development by acetyl salicylic acid-mediated inhibition of NF-kappaB

Eur J Immunol. 1998 Oct;28(10):3205-13. doi: 10.1002/(SICI)1521-4141(199810)28:10<3205::AID-IMMU3205>3.0.CO;2-8.


IL-12 is a 75-kDa heterodimeric cytokine composed of two covalently linked p35 and p40 chains. This pro-inflammatory cytokine plays a prominent role in the development of Th1 cell-mediated immune responses. Th1 cell-mediated immune responses have been implicated in the pathogenesis of chronic inflammatory autoimmune diseases. Thus, IL-12 appears to be a critical factor in the generation and maintenance of chronic inflammatory conditions. In this study, we investigated the effects of a commonly prescribed anti-inflammatory drug, acetyl salicylic acid (ASA), on IL-12 production and Th1 cell development. ASA was found to inhibit secretion of the IL-12 heterodimer as well as p40 monomer by human monocytic cells. This was associated with the down-regulation of IL-12p40 mRNA expression. Analysis of the regulation of the p40 gene promoter revealed that ASA inhibited NF-kappaB activation and binding to the p40-kappaB site in the p40 promoter, leading to transcriptional repression of the p40 gene. Addition of ASA to an in vitro T helper cell differentiation system, at concentrations compatible with plasma levels reached during anti-inflammatory therapy, resulted in reduced development of Th1 cells. These results suggest that the inhibition of NF-kappaB activation by ASA leads to down-regulation of IL-12 production and inhibition of Th1 cell development.

MeSH terms

  • Animals
  • Aspirin / pharmacology*
  • Cell Differentiation / drug effects
  • Cell Line
  • Gene Expression Regulation / drug effects
  • Humans
  • Interleukin-12 / biosynthesis*
  • Interleukin-12 / genetics
  • Mice
  • NF-kappa B / antagonists & inhibitors
  • NF-kappa B / metabolism*
  • Th1 Cells / drug effects
  • Th1 Cells / metabolism*
  • Transcription, Genetic / drug effects


  • NF-kappa B
  • Interleukin-12
  • Aspirin