Thermoregulatory responses to variations of photoperiod and ambient temperature in the male lesser mouse lemur: a primitive or an advanced adaptive character?

J Comp Physiol B. 1998 Oct;168(7):540-8. doi: 10.1007/s003600050175.

Abstract

The lesser mouse lemur, a small Malagasy primate, is exposed to strong seasonal variations in ambient temperature and food availability in its natural habitat. To face these environmental constraints, this nocturnal primate exhibits biological seasonal rhythms that are photoperiodically driven. To determine the role of daylength on thermoregulatory responses to changes in ambient temperature, evaporative water loss (EWL), body temperature (Tb) and oxygen consumption, measured as resting metabolic rate (RMR), were measured in response to ambient temperatures ranging from 5 degrees C to 35 degrees C, in eight males exposed to either short (10L:14D) or long (14L:10D) daylengths in controlled captive conditions. In both photoperiods, EWL, Tb and RMR were significantly modified by ambient temperatures. Exposure to ambient temperatures below 25 degrees C was associated with a decrease in Tb and an increase in RMR, whereas EWL remained constant. Heat exposure caused an increase in Tb and heat loss through evaporative pathways. Thermoregulatory responses to changes in ambient temperature significantly differed according to daylength. Daily variations in Tb and EWL were characterized by high values during the night. During the diurnal rest, lower values were found and a phase of heterothermia occurred in the early morning followed by a spontaneous rewarming. The amplitude of Tb decrease with or without the occurrence of torpor (Tb < 33 degrees C) was dependent on both ambient temperature and photoperiod. This would support the hypothesis of advanced thermoregulatory processes in mouse lemurs in response to selective environmental pressure, the major external cue being photoperiodic variations.

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Basal Metabolism
  • Body Temperature Regulation / physiology*
  • Body Water / metabolism
  • Cheirogaleidae / physiology*
  • Male
  • Oxygen Consumption
  • Periodicity
  • Photoperiod
  • Seasons
  • Temperature