Type III InsP3 receptor channel stays open in the presence of increased calcium

Nature. 1998 Nov 5;396(6706):81-4. doi: 10.1038/23954.

Abstract

The inositol 1,4,5-trisphosphate receptor (InsP3R) is the main calcium(Ca2+) release channel in most tissues. Three isoforms have been identified, but only types I and II InsP3R have been characterized. Here we examine the functional properties of the type III InsP3R because this receptor is restricted to the trigger zone from which Ca2+ waves originate and it has distinctive InsP3-binding properties. We find that type III InsP3R forms Ca2+ channels with single-channel currents that are similar to those of type I InsP3R; however, the open probability of type III InsP3R isoform increases monotonically with increased cytoplasmic Ca2+ concentration, whereas the type I isoform has a bell-shaped dependence on cytoplasmic Ca2+. The properties of type III InsP3R provide positive feedback as Ca2+ is released; the lack of negative feedback allows complete Ca2+ release from intracellular stores. Thus, activation of type III InsP3R in cells that express only this isoform results in a single transient, but global, increase in the concentration of cytosolic Ca2+. The bell-shaped Ca2+-dependence curve of type I InsP3R is ideal for supporting Ca2+ oscillations, whereas the properties of type III InsP3R are better suited to signal initiation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Allosteric Regulation
  • Animals
  • Calcium / metabolism*
  • Calcium Channels / metabolism*
  • Calcium Signaling
  • Cell Line
  • Cytoplasm / metabolism
  • Dogs
  • Endoplasmic Reticulum / metabolism
  • Inositol 1,4,5-Trisphosphate / metabolism*
  • Inositol 1,4,5-Trisphosphate Receptors
  • Rats
  • Receptors, Cytoplasmic and Nuclear / metabolism*

Substances

  • Calcium Channels
  • Inositol 1,4,5-Trisphosphate Receptors
  • Receptors, Cytoplasmic and Nuclear
  • Inositol 1,4,5-Trisphosphate
  • Adenosine Triphosphate
  • Calcium