The airflow obstruction in chronic obstructive pulmonary disease (COPD) occurs mainly at the level of the small airways. In order to investigate the effect of smoking on small-airway submucosal immunopathology, we used immunohistochemistry in peripheral lung sections obtained at surgery from a group of smokers (n = 22) and from a group of nonsmokers (n = 22) that contained both ex-smokers (n = 17) and lifelong nonsmokers (n = 5). Subjects were also divided into those with (n = 19) and those without (n = 20) airflow obstruction. We found an increase in total eosinophils (p = 0.001) and activated eosinophils (p = 0.010), an increase in the CD8(+)/CD3(+) cell ratio (p = 0.003), and a decrease in the CD4(+)/CD8(+) cell ratio (p = 0.005) among cells infiltrating the small-airway submucosa in an area 50 micrometers deep to the basement membrane in smokers as compared with nonsmokers. There was also an increase in neutrophils (p = 0.019) when smokers were compared with lifelong nonsmokers. Neutrophil numbers correlated with numbers of eosinophils (p = 0.0003, r = 0.58). Furthermore, the CD8(+)/CD3(+) cell ratio was related to pack-years smoked (p = 0.016, r = 0.36), months since smoking cessation (p = 0.003, r = 0.47), and number of infiltrating eosinophils (p = 0.007, r = 0.43) and neutrophils (p = 0.004, r = 0.44). These findings suggest that smoking induces movement of an inflammatory infiltrate into the submucosa of the small airway, the location of the increased resistance to airflow in COPD.