Temporal dynamics of convergent modulation at a crustacean neuromuscular junction

J Neurophysiol. 1998 Nov;80(5):2559-70. doi: 10.1152/jn.1998.80.5.2559.

Abstract

At least 10 different substances modulate the amplitude of nerve-evoked contractions of the gastric mill 4 (gm4) muscle of the crab, Cancer borealis. Serotonin, dopamine, octopamine, proctolin, red pigment concentrating hormone, crustacean cardioactive peptide, TNRNFLRFamide, and SDRNFLRFamide increased and -allatostatin-3 and histamine decreased the amplitude of nerve-evoked contractions. Modulator efficacy was frequency dependent; TNRNFLRFamide, proctolin, and allatostatin-3 were more effective when the motor neuron was stimulated at 10 Hz than at 40 Hz, whereas the reverse was true for dopamine and serotonin. The modulators that were most effective at high stimulus frequencies produced a significant decrease in muscle relaxation time; those that were most effective at low stimulus frequencies produced modest increases in relaxation time. Thus modulator actions that appear redundant when examined only at one stimulus frequency are differentiated when a range of stimulus dynamics is studied. The effects of TNRNFLRFamide, serotonin, proctolin, dopamine, and -allatostatin-3 on the amplitude and facilitation of nerve-evoked excitatory junctional potentials (EJPs) in the gm4 and gastric mill 6 (gm6) muscles were compared. The EJPs in gm4 have a large initial amplitude and show relatively little facilitation, whereas the EJPs in gm6 have a small initial amplitude and show considerable facilitation. Modulators that enhanced contractions also enhanced EJP amplitude; -allatostatin-3 reduced EJP amplitude. The effects of these modulators on EJP amplitude were modest and showed no significant frequency dependence. This suggests that the frequency dependence of modulator action on contraction results from effects on excitation-contraction coupling. The modulators affected facilitation at these junctions in a manner consistent with a change in release probability. They produced a change in facilitation that is inversely related to their action on EJP amplitude.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Crustacea
  • Electric Stimulation
  • Evoked Potentials / drug effects
  • Evoked Potentials / physiology
  • Male
  • Motor Neurons / drug effects
  • Motor Neurons / physiology
  • Muscle Contraction / drug effects
  • Muscle Contraction / physiology
  • Muscle Relaxation / drug effects
  • Muscle Relaxation / physiology
  • Neuromuscular Junction / drug effects
  • Neuromuscular Junction / physiology*