Characterization of the critical amino acids of an Aspergillus parasiticus cytochrome P-450 monooxygenase encoded by ordA that is involved in the biosynthesis of aflatoxins B1, G1, B2, and G2

Appl Environ Microbiol. 1998 Dec;64(12):4834-41. doi: 10.1128/AEM.64.12.4834-4841.1998.

Abstract

The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400-->Leu-400, Ala-143-->Ser-143, and Ile-528-->Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee.

MeSH terms

  • Aflatoxin B1 / biosynthesis
  • Aflatoxins / biosynthesis*
  • Amino Acid Sequence
  • Aspergillus / enzymology*
  • Aspergillus / genetics*
  • Base Sequence
  • Cloning, Molecular
  • Cytochrome P-450 Enzyme System / chemistry
  • Cytochrome P-450 Enzyme System / genetics*
  • Cytochrome P-450 Enzyme System / metabolism*
  • DNA, Complementary
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Promoter Regions, Genetic
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Sequence Homology, Nucleic Acid

Substances

  • Aflatoxins
  • DNA, Complementary
  • Recombinant Proteins
  • aflatoxin G1
  • aflatoxin G2
  • aflatoxin B2
  • Cytochrome P-450 Enzyme System
  • Aflatoxin B1

Associated data

  • GENBANK/AF017151
  • GENBANK/AF054820