The ability to generate specific genetic modifications in mice provides a powerful approach to assess gene function. When genetic modifications have been generated in the germ line, however, the resulting phenotype often only reflects the first time a gene has an influence on - or is necessary for - a particular biological process. Therefore, systems allowing conditional genetic modification have been developed (for a review, see [1]); for example, inducible forms of the Cre recombinase from P1 phage have been generated that can catalyse intramolecular recombination between target recognition sequences (loxP sites) in response to ligand [2] [3] [4] [5]. Here, we assessed whether a tamoxifen-inducible form of Cre recombinase (Cre-ERTM) could be used to modify gene activity in the mouse embryo in utero. Using the enhancer of the Wnt1 gene to restrict the expression of Cre-ERTM to the embryonic neural tube, we found that a single injection of tamoxifen into pregnant mice induced Cre-mediated recombination within the embryonic central nervous system, thereby activating expression of a reporter gene. Induction was ligand dependent, rapid and efficient. The results demonstrate that tamoxifen-inducible recombination can be used to effectively modify gene function in the mouse embryo.