Derepression of human embryonic zeta-globin promoter by a locus-control region sequence

Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14669-74. doi: 10.1073/pnas.95.25.14669.

Abstract

A multiple protein-DNA complex formed at a human alpha-globin locus-specific regulatory element, HS-40, confers appropriate developmental expression pattern on human embryonic zeta-globin promoter activity in humans and transgenic mice. We show here that introduction of a 1-bp mutation in an NF-E2/AP1 sequence motif converts HS-40 into an erythroid-specific locus-control region. Cis-linkage with this locus-control region, in contrast to the wild-type HS-40, allows erythroid lineage-specific derepression of the silenced human zeta-globin promoter in fetal and adult transgenic mice. Furthermore, zeta-globin promoter activities in adult mice increase in proportion to the number of integrated DNA fragments even at 19 copies/genome. The mutant HS-40 in conjunction with human zeta-globin promoter thus can be used to direct position-independent and copy number-dependent expression of transgenes in adult erythroid cells. The data also supports a model in which competitive DNA binding of different members of the NF-E2/AP1 transcription factor family modulates the developmental stage specificity of an erythroid enhancer. Feasibility to reswitch on embryonic/fetal globin genes through the manipulation of nuclear factor binding at a single regulatory DNA motif is discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Gene Expression Regulation, Developmental*
  • Genetic Linkage
  • Globins / genetics*
  • Humans
  • Mice
  • Mice, Transgenic
  • Multigene Family
  • Promoter Regions, Genetic*

Substances

  • Globins