Identification of the half-cystine residues in porcine submaxillary mucin critical for multimerization through the D-domains. Roles of the CGLCG motif in the D1- and D3-domains

J Biol Chem. 1998 Dec 18;273(51):34527-34. doi: 10.1074/jbc.273.51.34527.

Abstract

Plasmids encoding the amino-terminal region of porcine submaxillary mucin were modified by site-specific mutagenesis to assess the roles of individual half-cystine residues in the assembly of disulfide-linked multimers of mucin. COS-7 cells with the plasmid containing C1199A expressed primarily monomers, suggesting that half-cystine 1199 in the D3-domain is involved in forming mucin multimers. This residue is in the sequence C1199SWRYEPCG, which is highly conserved in the D3-domain of other secreted mucins and human prepro-von Willebrand factor. In contrast, cells with the plasmid containing C1276A expressed trimers like those with unmutated plasmid, suggesting that half-cystine 1276 is not involved in formation of disulfide-bonded multimers. The roles of the half-cystines in the CGLCG motifs in the assembly of disulfide-bonded multimers of mucin were also assessed. Cells with plasmids in which both half-cystines in the motif in the D1- or D3-domain of mucin are replaced by alanine expressed proteins that were poorly secreted, suggesting that these mutations impair normal folding of the expressed proteins. A plasmid with a mutant D1-domain motif expressed monomers, whereas one with a mutant D3-domain motif expressed monomers and trimers. However, the trimers expressed by the latter plasmid were assembled in non-acidic compartments, as judged by expression studies in the presence of monensin, which inhibits trimer formation by unmutated plasmid, but not by the mutant plasmid. These results suggest that the CGLCG motif in the D1-domain is required for multimerization in the trans-Golgi complex. However, the CGLCG motif in the D3-domain appears to prevent formation of mucin multimers in non-acidic compartments of the cell. Plasmids encoding the D1- and D2-domains, the D1- and D3-domains, or only the D3-domain also expressed oligomers in the presence of monensin, suggesting that the three D-domains must be contiguous to avoid multimerization in non-acidic compartments. It is possible that these motifs in mucins are engaged in the thiol-disulfide interchange reactions during the assembly of disulfide-bonded multimers of mucin.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • COS Cells
  • Consensus Sequence
  • Cystine / analysis*
  • Disulfides
  • Humans
  • Macromolecular Substances
  • Molecular Sequence Data
  • Mucins / chemistry*
  • Mucins / genetics
  • Plasmids
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / chemistry
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Submandibular Gland / chemistry
  • Submandibular Gland / metabolism*
  • Swine
  • Transfection

Substances

  • Disulfides
  • Macromolecular Substances
  • Mucins
  • Recombinant Proteins
  • Cystine