Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ

Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15223-8. doi: 10.1073/pnas.95.26.15223.


Chaperones of the Hsp70 family bind to unfolded or partially folded polypeptides to facilitate many cellular processes. ATP hydrolysis and substrate binding, the two key molecular activities of this chaperone, are modulated by the cochaperone DnaJ. By using both genetic and biochemical approaches, we provide evidence that DnaJ binds to at least two sites on the Escherichia coli Hsp70 family member DnaK: under the ATPase domain in a cleft between its two subdomains and at or near the pocket of substrate binding. The lower cleft of the ATPase domain is defined as a binding pocket for the J-domain because (i) a DnaK mutation located in this cleft (R167H) is an allele-specific suppressor of the binding defect of the DnaJ mutation, D35N and (ii) alanine substitution of two residues close to R167 in the crystal structure, N170A and T173A, significantly decrease DnaJ binding. A second binding determinant is likely to be in the substrate-binding domain because some DnaK mutations in the vicinity of the substrate-binding pocket are defective in either the affinity (G400D, G539D) or rate (D526N) of both peptide and DnaJ binding to DnaK. Binding of DnaJ may propagate conformational changes to the nearby ATPase catalytic center and substrate-binding sites as well as facilitate communication between these two domains to alter the molecular properties of Hsp70.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphatases / chemistry
  • Adenosine Triphosphatases / metabolism
  • Amino Acid Substitution
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism
  • Binding Sites
  • Escherichia coli / genetics
  • Escherichia coli / growth & development
  • Escherichia coli / metabolism
  • Escherichia coli Proteins*
  • HSP40 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins / chemistry*
  • HSP70 Heat-Shock Proteins / metabolism*
  • Heat-Shock Proteins / chemistry*
  • Heat-Shock Proteins / metabolism*
  • Kinetics
  • Models, Molecular
  • Molecular Chaperones / metabolism
  • Mutagenesis, Site-Directed
  • Phenotype
  • Protein Structure, Secondary*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism


  • Bacterial Proteins
  • DnaJ protein, E coli
  • Escherichia coli Proteins
  • HSP40 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • Heat-Shock Proteins
  • Molecular Chaperones
  • Recombinant Proteins
  • Adenosine Triphosphatases
  • dnaK protein, E coli