EGF receptor signaling in Drosophila oogenesis

Curr Top Dev Biol. 1999;44:203-43. doi: 10.1016/s0070-2153(08)60471-8.


The spatial regulation of Egfr activity in the follicular epithelium of the ovary is achieved by the localization of its ligand, Gurken, within the germline. The final distribution of Gurken within the oocyte appears to be specified both by the localization of the gurken RNA and by regulation of Gurken protein accumulation, possibly at the level of translation. Localized activation of the Egfr distinguishes certain subpopulations of follicle cells, thereby generating asymmetry within the follicular epithelium. In early oogenesis, Egfr activation in posterior follicle cells defines the AP polarity of the egg chamber, and in midoogenesis restriction of Egfr activity to dorsal follicle cells determines DV polarity. A number of factors required downstream of the Egfr have been identified, but the mechanism by which the observed patterning of the follicular epithelium is achieved remains unclear. The dynamic expression patterns of some of these targets suggest that the initial Gurken-Egfr signal at the dorsal side of the follicular epithelium mediates an initial distinction between dorsal and ventral follicle cells and also initiates subsequent refinement processes that determine the final pattern of cell fates. In the dorsal follicle cells, this refinement appears to involve interactions between Egfr targets and may also involve feedback regulation of Egfr activity such that the profile of Egfr activity is modulated over time. In addition, the initial Gurken-Egfr signal negatively regulates the functional domain of another patterning process that governs the establishment of the DV axis of the developing embryo.

Publication types

  • Review

MeSH terms

  • Animals
  • Drosophila / physiology*
  • ErbB Receptors / metabolism*
  • Humans
  • Oogenesis / physiology*
  • Signal Transduction / physiology*


  • ErbB Receptors