Lipoprotein(a) as a risk factor for coronary artery disease

Am J Cardiol. 1998 Dec 17;82(12A):57U-66U; discussion 86U. doi: 10.1016/s0002-9149(98)00954-0.


Since its identification by Kåre Berg in 1963, lipoprotein(a) [Lp(a)] has become a focus of research interest owing to the results of case-control and prospective studies linking elevated plasma levels of this lipoprotein with the development of coronary artery disease. Lp(a) contains a low-density lipoprotein (LDL)-like moiety, in which the apolipoprotein B-100 component is covalently linked to the unique glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) is composed of repeated loop-shaped units called kringles, the sequences of which are highly similar to a kringle motif present in the fibrinolytic proenzyme plasminogen. Variability in the number of repeated kringle units in the apo(a) molecule gives rise to different-sized Lp(a) isoforms in the population. Based on the similarity of Lp(a) to both LDL and plasminogen, it has been hypothesized that the function of this unique lipoprotein may represent a link between the fields of atherosclerosis and thrombosis. However, determination of the function of Lp(a) in vivo remains elusive. Although Lp(a) has been shown to accumulate in atherosclerotic lesions, its contribution to the development of atheromas is unclear. This uncertainty is related in part to the structural complexity of the apo(a) component of Lp(a) (particularly apo(a) isoform size heterogeneity), which also poses a challenge for standardization of the measurement of Lp(a) in plasma. The fact that plasma Lp(a) levels are largely genetically determined and vary widely among different ethnic groups adds scientific interest to the ongoing study of this enigmatic particle. Most recently, the identification of proteolytic fragments of apo(a) in both plasma and urine has fueled speculation about the origin of these fragments and their possible function in the atherosclerotic process.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Coronary Disease / etiology*
  • Humans
  • Hyperlipoproteinemias / complications*
  • Lipoprotein(a) / blood*
  • Lipoprotein(a) / chemistry
  • Lipoprotein(a) / genetics
  • Risk Factors


  • Lipoprotein(a)