The two migration inhibitory factor- (MIF)-related protein-8 (MRP8; S100A8) and MRP14 (S100A9) are two calcium-binding proteins of the S100 family. These proteins are expressed during myeloid differentiation, are abundant in granulocytes and monocytes, and form a heterodimeric complex in a Ca2+-dependent manner. Phagocytes expressing MRP8 and MRP14 belong to the early infiltrating cells and dominate acute inflammatory lesions. In addition, elevated serum levels of MRP8 and MRP14 have been found in patients suffering from a number of inflammatory disorders including cystic fibrosis, rheumatoid arthritis, and chronic bronchitis, suggesting conceivable extracellular roles for these proteins. Although a number of possible functions for MRP8/14 have been proposed, the biological function still remains unclear. This review addresses recent developments regarding the MRP14-mediated promotion of leukocyte-endothelial cell-interactions and the characterization of MRP8/14 heterodimers as a fatty acid binding protein complex. In view of the current knowledge, the authors will hypothesize that MRP8 and MRP14 play an important role in leukocyte trafficking, but do not affect neutrophil effector functions.