Developmental mucin gene expression in the human respiratory tract

Am J Respir Cell Mol Biol. 1999 Feb;20(2):209-18. doi: 10.1165/ajrcmb.20.2.3259.


The epithelial surface of the respiratory tract is coated with a protective film of mucus secreted by epithelial goblet and submucosal gland cells. Histology of the airway mucosa and composition of secretions during the second trimester of fetal life are known to differ from the normal adult in that these secretions show similarities with those of hypersecretory disorders. To provide information regarding cell-specific expression of mucin genes and their relation to developmental patterns of epithelial cytodifferentiation, we studied the expression of eight different mucin genes (MUC1-MUC4, MUC5AC, MUC5B, MUC6, MUC7) in human embryonic and fetal respiratory tract using in situ hybridization. These investigations demonstrated that MUC4 is the earliest gene expressed in the foregut at 6.5 wk, followed by MUC1 and MUC2 from 9. 5 wk of gestation in trachea, bronchi, epithelial tubules, and terminal sacs before epithelial cytodifferentiation. In contrast, MUC5AC, MUC5B, and MUC7 are expressed at later gestational ages concomitant with epithelial cytodifferentiation. During this developmental stage, MUC1 and MUC4 mRNAs are located in goblet and ciliated cells, whereas MUC2 mRNAs are located in basal and goblet cells. MUC5AC expression is confined to goblet cells. In the submucosal glands, MUC2 mRNAs are located in both mucous and serous cells, whereas MUC5B and MUC7 mRNAs are expressed in mucous and in serous cells, respectively. These data suggest distinct developmental roles for MUC1, MUC2, MUC4, MUC5AC, MUC5B, and MUC7 in the elongation, branching, and epithelial cytodifferentiation of the respiratory tract during ontogenesis. Distinct patterns of mucin gene expression are also likely to play an important role in regulating appropriate epithelial cell proliferation and cytodifferentiation in adult airway mucosa as it is indicated by aberrant expression in hypersecretory disorders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Base Sequence
  • DNA Probes
  • Embryo, Mammalian / metabolism*
  • Gene Expression Regulation, Developmental*
  • Humans
  • In Situ Hybridization
  • Mucins / genetics*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Respiratory System / metabolism*


  • DNA Probes
  • Mucins
  • RNA, Messenger