Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6

J Biol Chem. 1999 Feb 12;274(7):4180-8. doi: 10.1074/jbc.274.7.4180.

Abstract

A strain of the cyanobacterium Synechococcus elongatus was generated that expresses a hybrid version of the photosystem I subunit PsaF consisting of the first 83 amino acids of PsaF from the green alga Chlamydomonas reinhardtii fused to the C-terminal portion of PsaF from S. elongatus. The corresponding modified gene was introduced into the genome of the psaF-deletion strain FK2 by cointegration with an antibiotic resistance gene. The transformants express a new PsaF subunit similar in size to PsaF from C. reinhardtii that is assembled into photosystem I (PSI). Hybrid PSI complexes isolated from these strains show an increase by 2 or 3 orders of magnitude in the rate of P700(+) reduction by C. reinhardtii cytochrome c6 or plastocyanin in 30% of the complexes as compared with wild type cyanobacterial PSI. The corresponding optimum second-order rate constants (k2 = 4.0 and 1.7 x 10(7) M1 s1 for cytochrome c6 and plastocyanin) are similar to those of PSI from C. reinhardtii. The remaining complexes are reduced at a slow rate similar to that observed with wild type PSI from S. elongatus and the algal donors. At high concentrations of C. reinhardtii cytochrome c6, a fast first-order kinetic component (t(1)/(2) = 4 microseconds) is revealed, indicative of intramolecular electron transfer within a complex between the hybrid PSI and cytochrome c6. This first-order phase is characteristic for P700(+) reduction by cytochrome c6 or plastocyanin in algae and higher plants. However, a similar fast phase is not detected for plastocyanin. Cross-linking studies show that, in contrast to PSI from wild type S. elongatus, the chimeric PsaF of PSI from the transformed strain cross-links to cytochrome c6 or plastocyanin with a similar efficiency as PsaF from C. reinhardtii PSI. Our data indicate that development of a eukaryotic type of reaction mechanism for binding and electron transfer between PSI and its electron donors required structural changes in both PSI and cytochrome c6 or plastocyanin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Blotting, Southern
  • Chlamydomonas reinhardtii / metabolism*
  • Cyanobacteria / metabolism*
  • Cytochromes / metabolism*
  • Cytochromes f
  • Light
  • Membrane Proteins / metabolism*
  • Molecular Sequence Data
  • Photosynthetic Reaction Center Complex Proteins / metabolism*
  • Photosystem I Protein Complex*
  • Plastocyanin / metabolism*
  • Protein Binding
  • Protozoan Proteins*
  • Spectrophotometry, Atomic

Substances

  • Cytochromes
  • Membrane Proteins
  • Photosynthetic Reaction Center Complex Proteins
  • Photosystem I Protein Complex
  • Protozoan Proteins
  • psaF protein, Chlamydomonas reinhardtii
  • Plastocyanin
  • Cytochromes f