The induction of pain: an integrative review

Prog Neurobiol. 1999 Jan;57(1):1-164. doi: 10.1016/s0301-0082(98)00048-3.


The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.

Publication types

  • Review

MeSH terms

  • Animals
  • Brain / physiopathology
  • Humans
  • Nociceptors / physiology
  • Pain / physiopathology*
  • Spinal Cord / physiopathology
  • Synaptic Transmission / physiology