Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

My NCBI Filters
Results by year

Table representation of search results timeline featuring number of search results per year.

Year Number of Results
2006 1
2011 1
2012 1
2013 3
2014 2
2016 1
2017 1
2018 1
2019 1
2020 1
Text availability
Article attribute
Article type
Publication date

Search Results

11 results
Results by year
Filters applied: . Clear all
Page 1
CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair.
Batoon L, Millard SM, Wullschleger ME, Preda C, Wu AC, Kaur S, Tseng HW, Hume DA, Levesque JP, Raggatt LJ, Pettit AR. Batoon L, et al. Biomaterials. 2019 Mar;196:51-66. doi: 10.1016/j.biomaterials.2017.10.033. Epub 2017 Oct 22. Biomaterials. 2019. PMID: 29107337 Free article.
Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment.
Kaur S, Raggatt LJ, Millard SM, Wu AC, Batoon L, Jacobsen RN, Winkler IG, MacDonald KP, Perkins AC, Hume DA, Levesque JP, Pettit AR. Kaur S, et al. Among authors: wu ac. Blood. 2018 Aug 16;132(7):735-749. doi: 10.1182/blood-2018-01-829663. Epub 2018 Jun 26. Blood. 2018. PMID: 29945953
Unraveling macrophage contributions to bone repair.
Wu AC, Raggatt LJ, Alexander KA, Pettit AR. Wu AC, et al. Bonekey Rep. 2013 Jun 26;2:373. doi: 10.1038/bonekey.2013.107. eCollection 2013. Bonekey Rep. 2013. PMID: 25035807 Free PMC article. Review.
CD169(+) macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer.
Wu AC, He Y, Broomfield A, Paatan NJ, Harrington BS, Tseng HW, Beaven EA, Kiernan DM, Swindle P, Clubb AB, Levesque JP, Winkler IG, Ling MT, Srinivasan B, Hooper JD, Pettit AR. Wu AC, et al. J Pathol. 2016 Jun;239(2):218-30. doi: 10.1002/path.4718. Epub 2016 Apr 27. J Pathol. 2016. PMID: 27174786
Osteocyte expression of caspase-3, COX-2, IL-6 and sclerostin are spatially and temporally associated following stress fracture initiation.
Wu AC, Kidd LJ, Cowling NR, Kelly WL, Forwood MR. Wu AC, et al. Bonekey Rep. 2014 Sep 3;3:571. doi: 10.1038/bonekey.2014.66. eCollection 2014. Bonekey Rep. 2014. PMID: 25228984 Free PMC article.
Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification.
Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR. Raggatt LJ, et al. Am J Pathol. 2014 Dec;184(12):3192-204. doi: 10.1016/j.ajpath.2014.08.017. Epub 2014 Oct 5. Am J Pathol. 2014. PMID: 25285719 Free article.
Selective and non-selective cyclooxygenase inhibitors delay stress fracture healing in the rat ulna.
Kidd LJ, Cowling NR, Wu AC, Kelly WL, Forwood MR. Kidd LJ, et al. Among authors: wu ac. J Orthop Res. 2013 Feb;31(2):235-42. doi: 10.1002/jor.22203. Epub 2012 Jul 30. J Orthop Res. 2013. PMID: 22847634 Free article.
Absence of B cells does not compromise intramembranous bone formation during healing in a tibial injury model.
Raggatt LJ, Alexander KA, Kaur S, Wu AC, MacDonald KP, Pettit AR. Raggatt LJ, et al. Among authors: wu ac. Am J Pathol. 2013 May;182(5):1501-8. doi: 10.1016/j.ajpath.2013.01.046. Epub 2013 Mar 13. Am J Pathol. 2013. PMID: 23499466
Reduction of the in vitro pro-inflammatory response by macrophages to poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
Wu AC, Grøndahl L, Jack KS, Foo MX, Trau M, Hume DA, Cassady AI. Wu AC, et al. Biomaterials. 2006 Sep;27(27):4715-25. doi: 10.1016/j.biomaterials.2006.05.010. Epub 2006 Jun 5. Biomaterials. 2006. PMID: 16750849
Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model.
Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR. Alexander KA, et al. Among authors: wu ac. J Bone Miner Res. 2011 Jul;26(7):1517-32. doi: 10.1002/jbmr.354. J Bone Miner Res. 2011. PMID: 21305607 Free article.
11 results
Jump to page