Search Page
Save citations to file
Email citations
Send citations to clipboard
Add to Collections
Add to My Bibliography
Create a file for external citation management software
Your saved search
Your RSS Feed
Filters
Results by year
Table representation of search results timeline featuring number of search results per year.
Year | Number of Results |
---|---|
2018 | 1 |
2020 | 3 |
2021 | 1 |
2022 | 1 |
2023 | 1 |
Search Results
7 results
Results by year
Filters applied: . Clear all
Page 1
Non-Stationary Non-Hermitian "Wrong-Sign" Quantum Oscillators and Their Meaningful Physical Interpretation.
Entropy (Basel). 2023 Apr 19;25(4):692. doi: 10.3390/e25040692.
Entropy (Basel). 2023.
PMID: 37190480
Free PMC article.
Confluences of exceptional points and a systematic classification of quantum catastrophes.
Znojil M.
Znojil M.
Sci Rep. 2022 Mar 1;12(1):3355. doi: 10.1038/s41598-022-07345-7.
Sci Rep. 2022.
PMID: 35233059
Free PMC article.
Item in Clipboard
Quantum phase transitions in nonhermitian harmonic oscillator.
Znojil M.
Znojil M.
Sci Rep. 2020 Oct 28;10(1):18523. doi: 10.1038/s41598-020-75468-w.
Sci Rep. 2020.
PMID: 33116205
Free PMC article.
Item in Clipboard
Unitary unfoldings of a Bose-Hubbard exceptional point with and without particle number conservation.
Znojil M.
Znojil M.
Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200292. doi: 10.1098/rspa.2020.0292. Epub 2020 Oct 14.
Proc Math Phys Eng Sci. 2020.
PMID: 33223934
Free PMC article.
Item in Clipboard
Quantum phase transitions mediated by clustered non-Hermitian degeneracies.
Znojil M.
Znojil M.
Phys Rev E. 2021 Mar;103(3-1):032120. doi: 10.1103/PhysRevE.103.032120.
Phys Rev E. 2021.
PMID: 33862728
Item in Clipboard
The minimally anisotropic metric operator in quasi-Hermitian quantum mechanics.
Krejčiřík D, Lotoreichik V, Znojil M.
Krejčiřík D, et al. Among authors: znojil m.
Proc Math Phys Eng Sci. 2018 Sep;474(2217):20180264. doi: 10.1098/rspa.2018.0264. Epub 2018 Sep 12.
Proc Math Phys Eng Sci. 2018.
PMID: 30333705
Free PMC article.
Item in Clipboard
Theory of Response to Perturbations in Non-Hermitian Systems Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics.
Znojil M.
Znojil M.
Entropy (Basel). 2020 Jan 9;22(1):80. doi: 10.3390/e22010080.
Entropy (Basel). 2020.
PMID: 33285856
Free PMC article.
Item in Clipboard
Cite
Cite