Freeze-Dried β-Glucan and Poly-γ-glutamic Acid: An Efficient Stabilizer to Strengthen Subgrades of Low Compressible Fine-Grained Soils with Varying Curing Periods

Polymers (Basel). 2024 Jun 3;16(11):1586. doi: 10.3390/polym16111586.

Abstract

The freeze-drying of biopolymers presents a fresh option with greater potential for application in soil subgrade stabilization. A freeze-dried combination of β-glucan (BG) and γ-poly-glutamic acid (GPA) biopolymers was used to treat low compressible clay (CL) and low compressible silt (ML) soils in dosages of 0.5%, 1%, 1.5%, and 2%. The California bearing ratio (CBR) test for the treated specimens was performed under three curing conditions: (i) thermal curing at 60 °C, (ii) air-curing for seven days followed by submergence for 4 days, and (iii) no curing, i.e., tested immediately after mixing. To investigate the influence of shear strength on the freeze-dried biopolymer-stabilized soil specimens and their variations with aging, unconfined compressive strength (UCS) tests were conducted after thermal curing at 60 °C for 3 days, 7 days, and 7 days of thermal curing followed by 21 days of air curing. The maximum CBR of 125.3% was observed for thermally cured CL and a minimum CBR of 6.1% was observed under soaked curing conditions for ML soils. Scanning electron microscopy (SEM), infrared spectroscopy, average particle size, permeability, and adsorption tests revealed the pore filling, biopolymer adsorption and coating on the soil surface, and agglomeration of the soil along with the presence of hydrogen bonds, covalent amide bonds, and Van der Waals forces that contributed to the stiffening of the stabilized soil. Using three-dimensional (3D) finite element analysis (FEA) and layered elastic analysis (LEA), a mechanistic-empirical pavement design was carried out for the stabilized soil and a design thickness catalog was prepared for the maximum CBR. The cost reductions for a 1 km section of the pavement were expected to be 12.5%.

Keywords: CBR; biopolymer; freeze-drying; geotechnical; poly-γ-glutamic acid; β-glucan.

Grants and funding

This research received no external funding.