Chromium speciation by isophthalic acid-doped polymer dots as sensitive and selective fluorescent probes

Talanta. 2020 Mar 1:209:120521. doi: 10.1016/j.talanta.2019.120521. Epub 2019 Oct 31.

Abstract

Hexavalent chromium is a known carcinogen, among all species of chromium ions, for the respiratory tract in humans. In the present work, a new facile probe is developed for rapid and sensitive determination of Cr(VI) based on utilizing highly fluorescent conjugated poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3) thiadiazole)] (PFBT) polymer dots (PDs). The PDs are easily functionalized by doping of isophthalic acid (IPA) into the target PDs during a single step preparation. The prepared PDs with an average diameter of 30 nm illustrated a strong fluorescence with an emission peak centered at 530 nm (photo-excited at 480 nm). The strong fluorescence of PDs is selectively and significantly quench with Cr(VI), while it does not change by Cr(III) ion and, thus, can facilitate a chromium speciation process. The proposed mechanism is an inner filter effect (IFE) mechanism, in which the absorption bands of Cr(IV) overlaps with the emission and excitation bands of the modified PDs. The prepared PDs revealed a good linear relationship from 0.1 to 1000 μmol L-1 for Cr(VI) with a detection limit of 0.03 μmol L-1, which further used to track the Cr distribution in water samples. Finally, the IPA-doped PDs with excellent optical properties, biocompatibility, and high quantum yield showed promising potential in tracking Cr species and specifying of different Cr ions inside the human cells, which opening a new door toward getting a better insight into the cell function and metabolism in the presence of heavy metal ions, and especially chromium ions.

Keywords: Cell imaging; Chromium; Inner filter effect; Polymer dots; Speciation.