Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My NCBI Filters

Results by year

Table representation of search results timeline featuring number of search results per year.

Year Number of Results
1999 1
2000 2
2001 1
2002 1
2007 1
2008 1
2020 1
2023 0

Text availability

Article attribute

Article type

Publication date

Search Results

8 results

Results by year

Filters applied: . Clear all
Page 1
Supervised mixture of experts models for population health.
Shou X, Mavroudeas G, Magdon-Ismail M, Figueroa J, Kuruzovich JN, Bennett KP. Shou X, et al. Among authors: magdon ismail m. Methods. 2020 Jul 1;179:101-110. doi: 10.1016/j.ymeth.2020.05.016. Epub 2020 May 21. Methods. 2020. PMID: 32446958
No free lunch for noise prediction.
Magdon-Ismail M. Magdon-Ismail M. Neural Comput. 2000 Mar;12(3):547-64. doi: 10.1162/089976600300015709. Neural Comput. 2000. PMID: 10769322 Free article.
The early restart algorithm.
Magdon-Ismail M, Atiya AF. Magdon-Ismail M, et al. Neural Comput. 2000 Jun;12(6):1303-12. doi: 10.1162/089976600300015376. Neural Comput. 2000. PMID: 10935714 Free article.
No free lunch for early stopping.
Cataltepe Z, Abu-Mostafa YS, Magdon-Ismail M. Cataltepe Z, et al. Among authors: magdon ismail m. Neural Comput. 1999 May 15;11(4):995-1009. doi: 10.1162/089976699300016557. Neural Comput. 1999. PMID: 10226194 Free article.
Efficient optimal linear boosting of a pair of classifiers.
Boyarshinov V, Magdon-Ismail M. Boyarshinov V, et al. Among authors: magdon ismail m. IEEE Trans Neural Netw. 2007 Mar;18(2):317-28. doi: 10.1109/TNN.2006.881707. IEEE Trans Neural Netw. 2007. PMID: 17385622