Investigation and Comparison of the Effect of TGF-β3, kartogenin and Avocado/Soybean Unsaponifiables on the In-vitro and In-vivo Chondrogenesis of Human Adipose-Derived Stem Cells on Fibrin Scaffold

Iran J Pharm Res. 2021 Summer;20(3):368-380. doi: 10.22037/ijpr.2020.114420.14851.

Abstract

Due to the lack of suitable therapeutic approaches to cartilage defect, the objective of this study was to determine the effect of Transforming growth factor-β3 (TGF-β3), avocado/soybean (ASU) and Kartogenin (KGN) on chondrogenic differentiation in human adipose-derived stem cells (hADSCs) on fibrin scaffold. hADSCs seeded in fibrin scaffold and cultured in chondrogenic media. These cells were divided into 4 groups (control, TGF-β3, ASU and KGN). Cell viability was estimated by MTT assay. Differentiated cells were evaluated by histological and immunohistochemical (IHC) techniques. Expression genes [sex determining region Y-box 9 (SOX9), Aggrecan (AGG), type II collagen (Coll II) and type X collagen (Coll X)] were assessed by real-time PCR. For a study on an animal model, differentiated cells in fibrin scaffolds were subcutaneously transplanted in rats. Histological and immunohistochemistry were done in the animal model. The results of the real-time PCR indicated that SOX9, AGG and Col II genes expression in TGF-β3, KGN and ASU groups were significantly higher (p < 0.01) compared to the control group, Col X gene expression only in the TGF-β3 group was significantly higher (p < 0.01) compared to the control group. The glycosaminoglycan (GAG) deposition was higher in TGF-β3, KGN and ASU groups compared to the control group. The immunohistological analysis showed the distribution of collagen type X in the extracellular matrix in the fibrin scaffold TGF-β3 group was significantly higher in control, KGN and ASU groups, and (p < 0.001). ASU, particularly KGN, was suitable for successful chondrogenic differentiation of hADSCs and a suppressor of the consequent hypertrophy.

Keywords: Avocado/Soybean; Chondrogenesis; Fibrin; Human adipose-derived stem cells; Kartogenin; TGFβ3.