The influence of nanocellulose coating on saffron quality during storage

Carbohydr Polym. 2018 Feb 1:181:536-542. doi: 10.1016/j.carbpol.2017.12.008. Epub 2017 Dec 6.

Abstract

Since saffron is an added-value product, and the most expensive agricultural product, it is necessary to increase its shelf life, prevent its quality loss during storage, and maintain its organoleptic properties, enabling producers to export saffron with higher quality and better consumer acceptability. So, in this research, saffron samples were coated through applying different carbohydrate biopolymers: maltodextrin with DE=4 or DE=20 (MD4 and MD20) or their combination with nanocellulose fibres (MDC4 and MDC20). Finally, the experiments were carried out to measure rehydration ratio, water activity, crocin content, color values, and sensory properties of saffron samples coated by different materials. MDC4 resulted in the lowest rehydration ratio among coated samples since, first, lower DE degrees of biopolymer complexes decreased moisture adsorption and solubility of maltodextrin and second, crystalline nanocellulose fibres increased tortuous and bended pathways in materials and reduced penetration possibilities of water molecules. MDC4 was the most effective treatment in preventing crocin decrease. Indeed, film forming characteristic of maltodextrin with low hydrolysis degree and special structure of nanocellulose led to the maintenance of crocin bioactive ingredient. SEM observations revealed coating on saffron surfaces as a thin clear and brilliant layer which enhanced saffron acceptability for our panelists.

Keywords: Coating; Nanocellulose; Organoleptic properties; Saffron.