Hierarchical cluster analysis to identify the homogeneous desertification management units

PLoS One. 2019 Dec 18;14(12):e0226355. doi: 10.1371/journal.pone.0226355. eCollection 2019.

Abstract

Since in most mapping models geometric mean of different criteria are used to determine the desertification intensity, one of the most important issues in desertification studies is understanding the similar areas, which require similar management after determining the desertification intensity map. Two similar classes of desertification intensity may require different management due to differences in the criteria that affect its desertification severity. Therefore, after determining the geomorphological facies as the working units in Sistan plain, we used hierarchical cluster analysis to identify the homogeneous environmental management units (HEMUs) based on indices of MEDALUS model. According to the MEDALUS model, the studied area was divided into two categories namely medium and high desertification classes. Working units (geomorphological facies) are classified into five clusters according to HEMUs analysis based on climate, soil, vegetation, and wind erosion criteria. The first cluster (C11) include six facies with moderate and severe desertification; in all of these units the main effective factor was wind erosion, so they need the same management decisions controlling wind erosion. Two working units (1 and 4) with the same desertification severity were placed in two different clusters due to the main factors affecting each other. The results of the Mann-Whitney test showed that the value of the test statistics was 79. Also, the value of Asymp.Sig was obtained to be 0.018, which is less than 0.025 (two-tailed test), and it can be concluded that the classification of work units in the two models, clustering and desertification, is not equal (P<0.05). So It seems that using cluster analysis to identify the same units, which need the same management decision after preparing the desertification intensity, is necessary.

MeSH terms

  • Afghanistan
  • Cluster Analysis*
  • Conservation of Natural Resources*
  • Ecosystem
  • Environmental Monitoring
  • Iran
  • Wind

Grants and funding

The author(s) received no specific funding for this work.