Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
My NCBI Filters
Results by year

Table representation of search results timeline featuring number of search results per year.

Year Number of Results
1994 1
1997 2
1998 2
1999 1
2000 3
2001 1
2003 1
2005 2
2006 2
2007 1
2009 3
2010 2
2011 2
2012 6
2014 1
2015 1
2016 15
2017 10
2018 20
2019 56
2020 102
2021 8
Text availability
Article attribute
Article type
Publication date

Similar articles for PMID: 30630834

212 results
Results by year
Filters applied: . Clear all
Page 1
Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.
Hagiwara A, Otsuka Y, Hori M, Tachibana Y, Yokoyama K, Fujita S, Andica C, Kamagata K, Irie R, Koshino S, Maekawa T, Chougar L, Wada A, Takemura MY, Hattori N, Aoki S. Hagiwara A, et al. AJNR Am J Neuroradiol. 2019 Feb;40(2):224-230. doi: 10.3174/ajnr.A5927. Epub 2019 Jan 10. AJNR Am J Neuroradiol. 2019. PMID: 30630834 Free PMC article.
Clinical Feasibility of Synthetic MRI in Multiple Sclerosis: A Diagnostic and Volumetric Validation Study.
Granberg T, Uppman M, Hashim F, Cananau C, Nordin LE, Shams S, Berglund J, Forslin Y, Aspelin P, Fredrikson S, Kristoffersen-Wiberg M. Granberg T, et al. AJNR Am J Neuroradiol. 2016 Jun;37(6):1023-9. doi: 10.3174/ajnr.A4665. Epub 2016 Jan 21. AJNR Am J Neuroradiol. 2016. PMID: 26797137 Free article. Clinical Trial.
Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
Johnson PM, Drangova M. Johnson PM, et al. Magn Reson Med. 2019 Sep;82(3):901-910. doi: 10.1002/mrm.27772. Epub 2019 Apr 22. Magn Reson Med. 2019. PMID: 31006909
Data-driven synthetic MRI FLAIR artifact correction via deep neural network.
Ryu K, Nam Y, Gho SM, Jang J, Lee HJ, Cha J, Baek HJ, Park J, Kim DH. Ryu K, et al. J Magn Reson Imaging. 2019 Nov;50(5):1413-1423. doi: 10.1002/jmri.26712. Epub 2019 Mar 18. J Magn Reson Imaging. 2019. PMID: 30884007
Validation of Deep Learning-Based Artifact Correction on Synthetic FLAIR Images in a Different Scanning Environment.
Ryu KH, Baek HJ, Gho SM, Ryu K, Kim DH, Park SE, Ha JY, Cho SB, Lee JS. Ryu KH, et al. J Clin Med. 2020 Jan 29;9(2):364. doi: 10.3390/jcm9020364. J Clin Med. 2020. PMID: 32013069 Free PMC article.
Synthetic MRI for Clinical Neuroimaging: Results of the Magnetic Resonance Image Compilation (MAGiC) Prospective, Multicenter, Multireader Trial.
Tanenbaum LN, Tsiouris AJ, Johnson AN, Naidich TP, DeLano MC, Melhem ER, Quarterman P, Parameswaran SX, Shankaranarayanan A, Goyen M, Field AS. Tanenbaum LN, et al. AJNR Am J Neuroradiol. 2017 Jun;38(6):1103-1110. doi: 10.3174/ajnr.A5227. Epub 2017 Apr 27. AJNR Am J Neuroradiol. 2017. PMID: 28450439 Free article.
Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
Narayana PA, Coronado I, Sujit SJ, Sun X, Wolinsky JS, Gabr RE. Narayana PA, et al. Magn Reson Imaging. 2020 Jan;65:8-14. doi: 10.1016/j.mri.2019.10.003. Epub 2019 Oct 25. Magn Reson Imaging. 2020. PMID: 31670238 Free PMC article. Clinical Trial.
Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging.
Duong MT, Rudie JD, Wang J, Xie L, Mohan S, Gee JC, Rauschecker AM. Duong MT, et al. AJNR Am J Neuroradiol. 2019 Aug;40(8):1282-1290. doi: 10.3174/ajnr.A6138. Epub 2019 Jul 25. AJNR Am J Neuroradiol. 2019. PMID: 31345943 Free PMC article.
Retrospective correction of motion-affected MR images using deep learning frameworks.
Küstner T, Armanious K, Yang J, Yang B, Schick F, Gatidis S. Küstner T, et al. Magn Reson Med. 2019 Oct;82(4):1527-1540. doi: 10.1002/mrm.27783. Epub 2019 May 13. Magn Reson Med. 2019. PMID: 31081955
Image quality at synthetic brain magnetic resonance imaging in children.
Lee SM, Choi YH, Cheon JE, Kim IO, Cho SH, Kim WH, Kim HJ, Cho HH, You SK, Park SH, Hwang MJ. Lee SM, et al. Pediatr Radiol. 2017 Nov;47(12):1638-1647. doi: 10.1007/s00247-017-3913-y. Epub 2017 Jun 22. Pediatr Radiol. 2017. PMID: 28638982
212 results
You have reached the last page of results. A maximum of 10,000 results are available.
Jump to page
Feedback