Alkaline pH homeostasis in bacteria: new insights

Biochim Biophys Acta. 2005 Nov 30;1717(2):67-88. doi: 10.1016/j.bbamem.2005.09.010. Epub 2005 Sep 26.

Abstract

The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g., the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologs from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na(+)/H(+) antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure of NhaA. This review highlights the approaches, major findings and unresolved problems in alkaline pH homeostasis, focusing on the small number of well-characterized alkali-tolerant and extremely alkaliphilic bacteria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alkalies / metabolism
  • Escherichia coli / physiology*
  • Escherichia coli Proteins / metabolism
  • Gene Expression Regulation, Bacterial / physiology*
  • Genes, Bacterial / physiology*
  • Homeostasis / physiology*
  • Hydrogen-Ion Concentration
  • Ion Transport / physiology
  • Sodium-Hydrogen Exchangers / metabolism

Substances

  • Alkalies
  • Escherichia coli Proteins
  • Sodium-Hydrogen Exchangers