Agent-based modeling of morphogenetic systems: Advantages and challenges

PLoS Comput Biol. 2019 Mar 28;15(3):e1006577. doi: 10.1371/journal.pcbi.1006577. eCollection 2019 Mar.

Abstract

The complexity of morphogenesis poses a fundamental challenge to understanding the mechanisms governing the formation of biological patterns and structures. Over the past century, numerous processes have been identified as critically contributing to morphogenetic events, but the interplay between the various components and aspects of pattern formation have been much harder to grasp. The combination of traditional biology with mathematical and computational methods has had a profound effect on our current understanding of morphogenesis and led to significant insights and advancements in the field. In particular, the theoretical concepts of reaction-diffusion systems and positional information, proposed by Alan Turing and Lewis Wolpert, respectively, dramatically influenced our general view of morphogenesis, although typically in isolation from one another. In recent years, agent-based modeling has been emerging as a consolidation and implementation of the two theories within a single framework. Agent-based models (ABMs) are unique in their ability to integrate combinations of heterogeneous processes and investigate their respective dynamics, especially in the context of spatial phenomena. In this review, we highlight the benefits and technical challenges associated with ABMs as tools for examining morphogenetic events. These models display unparalleled flexibility for studying various morphogenetic phenomena at multiple levels and have the important advantage of informing future experimental work, including the targeted engineering of tissues and organs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Apoptosis
  • Cell Proliferation
  • Models, Biological
  • Morphogenesis*
  • Systems Analysis*

Grants and funding

The authors gratefully acknowledge funding from NSF Emergent Behaviors of Integrated Cellular Systems Science and Technology Center (CBET 0939511) and NSF-MCB 1517588 (EOV [PI]) and a graduate research fellowship to CMG from the Natural Sciences and Engineering Research Council of Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.