Responses of amino acid metabolizing enzymes from plants differing in salt tolerance to NaCl

Oecologia. 1978 Jan;36(3):307-315. doi: 10.1007/BF00348056.

Abstract

This paper reports the effects of NaCl on the in vivo activity of glutamate dehydrogenase (GDH) and glutamic-oxaloacetic transaminase (GOT) and on the in vitro activity of GDH, both enzymes having been isolated from plants differing in salt tolerance. The plants investigated were Vicia faba (salt-sensitive), Atriplex nitens and Atriplex calotheca (more or less salt-tolerant), and Atriplex halimus (halophyte) grown at various NaCl concentrations. GDH and GOT isolated from various salt-tolerant plants grown at low NaCl concentrations were inhibited in a similar way. At high NaCl concentrations, the enzyme activities remain at constant values only in the Atriplex species. GOT was more impaired by NaCl than GDH. In the case of GOT, the double reciprocal plot indicated the type of a noncompetitive inhibition. The in vitro effect of NaCl on the activity of GDH from the differentially salt-tolerant plants was of a different kind, i.e. GDH isolated from V. faba was clearly inhibited by NaCl, whereas NaCl stimulated the activity of GDH from all Atriplex species investigated. Kinetic analysis showed that substrate inhibition of GDH from A. nitens and A. calotheca grown at non-saline conditions could be removed by NaCl. Inhibition by high NaCl concentrations at low substrate concentrations was removable by increasing substrate concentrations. Moreover, the inhibition at low substrate concentrations was shown to be competitive. GDH lost this regulatory property when the plants were pretreated with 500 mM NaCl. GDH from A. halimus also possessed this control, but in contrast to A. nitens and A. calotheca, activity and control of GDH isolated from A. halimus were stimulated by pretreating the plants with 500 mM NaCl. The results showed that DDH isolated from the salt-tolerant Atriplex species was adapted to high NaCl concentrations of the tissue. Possible mechanisms of the interactions between GDH from salt-tolerant Atriplex species and NaCl are discussed.