Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

My NCBI Filters
Text availability
Article attribute
Article type
Publication date

Search Results

129 results
Filters applied: . Clear all Results are displayed in a computed author sort order. Results by year timeline is unavailable
Page 1
Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases.
Chipman D, Barak Z, Schloss JV. Chipman D, et al. Biochim Biophys Acta. 1998 Jun 29;1385(2):401-19. doi: 10.1016/s0167-4838(98)00083-1. Biochim Biophys Acta. 1998. PMID: 9655946 Review.
Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of holoenzyme.
Vyazmensky M, Elkayam T, Chipman DM, Barak Z. Vyazmensky M, et al. Among authors: chipman dm. Methods Enzymol. 2000;324:95-103. doi: 10.1016/s0076-6879(00)24222-5. Methods Enzymol. 2000. PMID: 10989421 No abstract available.
Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4'-aminopyrimidinium and 1',4'-iminopyrimidine tautomeric forms in the absence of the conserved glutamate.
Nemeria N, Binshtein E, Patel H, Balakrishnan A, Vered I, Shaanan B, Barak Z, Chipman D, Jordan F. Nemeria N, et al. Among authors: chipman d. Biochemistry. 2012 Oct 9;51(40):7940-52. doi: 10.1021/bi300893v. Epub 2012 Sep 25. Biochemistry. 2012. PMID: 22970650 Free PMC article.
Reaction mechanisms of thiamin diphosphate enzymes: new insights into the role of a conserved glutamate residue.
Shaanan B, Chipman DM. Shaanan B, et al. FEBS J. 2009 May;276(9):2447-53. doi: 10.1111/j.1742-4658.2009.06965.x. Epub 2009 Mar 16. FEBS J. 2009. PMID: 19476486 Review.
Glyoxylate carboligase lacks the canonical active site glutamate of thiamine-dependent enzymes.
Kaplun A, Binshtein E, Vyazmensky M, Steinmetz A, Barak Z, Chipman DM, Tittmann K, Shaanan B. Kaplun A, et al. Nat Chem Biol. 2008 Feb;4(2):113-8. doi: 10.1038/nchembio.62. Epub 2008 Jan 6. Nat Chem Biol. 2008. PMID: 18176558
Allosteric regulation of Bacillus subtilis threonine deaminase, a biosynthetic threonine deaminase with a single regulatory domain.
Shulman A, Zalyapin E, Vyazmensky M, Yifrach O, Barak Z, Chipman DM. Shulman A, et al. Biochemistry. 2008 Nov 11;47(45):11783-92. doi: 10.1021/bi800901n. Epub 2008 Oct 15. Biochemistry. 2008. PMID: 18855421
Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I.
Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM. Belenky I, et al. FEBS J. 2012 Jun;279(11):1967-79. doi: 10.1111/j.1742-4658.2012.08577.x. Epub 2012 Apr 20. FEBS J. 2012. PMID: 22443469
Allosteric regulation in Acetohydroxyacid Synthases (AHASs)--different structures and kinetic behavior in isozymes in the same organisms.
Barak Z, Chipman DM. Barak Z, et al. Arch Biochem Biophys. 2012 Mar 15;519(2):167-74. doi: 10.1016/j.abb.2011.11.025. Epub 2011 Dec 16. Arch Biochem Biophys. 2012. PMID: 22198286 Review.
Significant catalytic roles for Glu47 and Gln 110 in all four of the C-C bond-making and -breaking steps of the reactions of acetohydroxyacid synthase II.
Vyazmensky M, Steinmetz A, Meyer D, Golbik R, Barak Z, Tittmann K, Chipman DM. Vyazmensky M, et al. Among authors: chipman dm. Biochemistry. 2011 Apr 19;50(15):3250-60. doi: 10.1021/bi102051h. Epub 2011 Mar 23. Biochemistry. 2011. PMID: 21370850
Role of the C-terminal domain of the regulatory subunit of AHAS isozyme III: use of random mutagenesis with in vivo reconstitution (REM-ivrs).
Slutzker A, Vyazmensky M, Chipman DM, Barak Z. Slutzker A, et al. Biochim Biophys Acta. 2011 Mar;1814(3):449-55. doi: 10.1016/j.bbapap.2011.01.002. Epub 2011 Jan 9. Biochim Biophys Acta. 2011. PMID: 21224018
129 results
You have reached the last page of results. A maximum of 10,000 results are available.
Jump to page
Feedback